首页 | 本学科首页   官方微博 | 高级检索  
     


Tolerance evolutionary model and algorithm in product growth design
Authors:B Yang  C Q Gao  H T Li  X Z Wang
Affiliation:1. School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
Abstract:To guarantee the successful transformation from product functional requirement to geometry constraints and finally to dimension constraints between components in a product, an evolutionary tolerance design strategy is proposed on the basis of automation technology in product structure design. In the first part of this paper, the theory of the growth design and the process of tolerance evolutionary design are introduced. Following the evolution of product structure, product tolerance grows from its initial state, defined by accuracy requirements, to its final state, defined as dimension tolerance and geometric tolerance. In this growing process, the basic units in the product growth design, known as functional surfaces and their nominal features, are used as evolutionary carriers. With the help of these basic units, the method for the construction of a two-layer correlation network is proposed. In the second part, the tolerance assertions to assist tolerance evolutionary design are given, based on which the basic process for an evolutionary design of dimensions chain and geometric tolerance are presented. In order to optimize the allocation of the dimension tolerance, a mathematical model is developed in which a correlated sensitivity function between the cost and the tolerance is created. In the model, the design cost, the manufacturing cost, the usage cost, and the depreciation cost of the product are used as constraints to the tolerance allocation. Considering these costs, a multifactor cost function to express quality loss of the product is developed and is applied into the model. The minimum cost is used as the objective function, and the depreciation cost in the objective function is expressed by the discount rate—terminology in economics. The aim was to achieve a final and ideal balance around assembly, manufacturing, and usage through the control of product precision. In the last part, the successful usage of the proposed tolerance evolutionary strategy in the incremental growth product design is demonstrated through a design example.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号