首页 | 本学科首页   官方微博 | 高级检索  
     


Photoinduced Directional Proton Transport through Printed Asymmetric Graphene Oxide Superstructures: A New Driving Mechanism under Full‐Area Light Illumination
Authors:Yanbing Zhang  Fengyu Li  Xian Kong  Tangyue Xue  Dan Liu  Pan Jia  Lili Wang  Liping Ding  Huanli Dong  Diannan Lu  Lei Jiang  Wei Guo
Abstract:2D‐material‐based membranes with densely packed sub‐nanometer‐height fluidic channels show exceptional transport properties, and have attracted broad research interest for energy‐, environment‐, and healthcare‐related applications. Recently, light‐controlled active transport of ionic species in abiotic materials have received renewed attention. However, its dependence on inhomogeneous or site‐specific illumination is a challenge for scalable application. Here, directional proton transport through printed asymmetric graphene oxide superstructures (GOSs) is demonstrated under full‐area illumination. The GOSs are composed of partially stacked graphene oxide multilayers formed by a two‐step direct ink writing process. The direction of the photoinduced proton current is determined by the position of top graphene oxide multilayers, which functions as a photogate to modulate the horizontal ion transport through the beneath lamellar nanochannels. This transport phenomenon unveils a new driving mechanism that, in asymmetric nanofluidic structures, the decay of local light intensity in depth direction breaks the balance of electric potential distribution in horizontal direction, and thus generates a photoelectric driving force for ion transport. Following this mechanism, the GOSs are developed into photonic ion transistors with three different gating modes. The asymmetrically printed photonic‐ionic devices provide fundamental elements for light‐harvesting nanofluidic circuits, and may find applications for artificial photosynthesis and artificial electric organs.
Keywords:2D layered materials  bioinspired materials  ion transport  light‐driven  nanofluidics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号