首页 | 本学科首页   官方微博 | 高级检索  
     


Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for High‐Efficiency Perovskite Solar Cells
Authors:Pingli Qin  Tong Wu  Zhengchun Wang  Lan Xiao  Liang Ma  Feihong Ye  Lun Xiong  Xiangbai Chen  Haixia Li  Xueli Yu  Guojia Fang
Abstract:The plasmonic characteristic of core–shell nanomaterials can effectively improve exciton‐generation/dissociation and carrier‐transfer/collection. In this work, a new strategy based on core–shell Au@CdS nanospheres is introduced to passivate perovskite grain boundaries (GBs) and the perovskite/hole transport layer interface via an antisolvent process. These core–shell Au@CdS nanoparticles can trigger heterogeneous nucleation of the perovskite precursor for high‐quality perovskite films through the formation of the intermediate Au@CdS–PbI2 adduct, which can lower the valence band maximum of the 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)9,9‐spirobifluorene (Spiro‐OMeTAD) for a more favorable energy alignment with the perovskite material. With the help of the localized surface plasmon resonance effect of Au@CdS, holes can easily overcome the barrier at the perovskite/Spiro‐OMeTAD interface (or GBs) through the bridge of the intermediate Au@CdS–PbI2, avoiding the carrier accumulation, and suppress the carrier trap recombination at the Spiro‐OMeTAD/perovskite interface. Consequently, the Au@CdS‐based perovskite solar cell device achieves a high efficiency of over 21%, with excellent stability of ≈90% retention of initial power conversion efficiencies after 45 days storage in dry air.
Keywords:Au@CdS  core–  shell nanoparticles  interface passivation  perovskite photovoltaic devices
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号