首页 | 本学科首页   官方微博 | 高级检索  
     


Phase evolution and microwave dielectric properties of MgO-B2O3-SiO2-based glass-ceramics
Authors:Urban Do&scaron  ler,Marjeta Ma?ek Kr?mancDanilo Suvorov
Affiliation:“Jo?ef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
Abstract:The densification and crystallization behaviors of MgO-B2O3-SiO2 (MBS) glass with various amounts of TiO2 additions (0-10 wt.%) were investigated by means of thermal analysis, X-ray powder diffraction and scanning electron microscopy. A microwave dielectric characterization was performed in order to evaluate the suitability of MBS glass-ceramics as a low-permittivity dielectric substrate. The densification of the MBS glass started below 700 °C. The main crystalline phases of Mg2B2O5 and MgSiO3 appeared at 800 and 950 °C, respectively. The Mg3TiB2O8 and TiB0.024O2 phases additionally crystallized in TiO2-added MBS glass-ceramics at 1000 °C. The permittivity increased from 6.1 in pure MBS glass to 6.9 in MBS glass with 10 wt.% of TiO2. The addition of TiO2 enhanced the crystallization and consequently increased the Qxf-values of the MBS glass (11 300 GHz) up to 16 500 GHz. The improvement of the Qxf-values became the most evident at 1050 °C. Dense MBS glass-ceramics sintered at 850 ≤ T ≤ 950 °C exhibited Qxf-values of 5000-8000 GHz (at ∼12 GHz), which are comparable with the values of CaO-B2O3-SiO2-based glass-ceramics.
Keywords:D. Glass-ceramics   Crystallization   Microwave dielectric properties   Nucleating agent
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号