首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section
Authors:Y Sui  PS Lee  CJ Teo
Affiliation:Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Abstract:Experimental investigation has been conducted on the flow friction and heat transfer in sinusoidal microchannels with rectangular cross sections. The microchannels considered consist of ten identical wavy units with average width of about 205 μm, depth of 404 μm, wavelength of 2.5 mm and wavy amplitude of 0–259 μm. Each test piece is made of copper and contains 60–62 wavy microchannels in parallel. Deionized water is employed as the working fluid and the Reynolds numbers considered range from about 300 to 800. The experimental results, mainly the overall Nusselt number and friction factor, for wavy microchannels are compared with those of straight baseline channels with the same cross section and footprint length. It is found that the heat transfer performance of the present wavy microchannels is much better than that of straight baseline microchannels; at the same time the pressure drop penalty of the present wavy microchannels can be much smaller than the heat transfer enhancement. Conjugate simulation based on the classical continuum approach is also carried out for similar experimental conditions, the numerical results agree reasonably well with experimental data.
Keywords:Wavy microchannel  Heat sinks  Liquid cooling  Dean vortex  Chaotic advection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号