首页 | 本学科首页   官方微博 | 高级检索  
     


Photophysical properties and photoelectrochemical performances of sol-gel derived copper stannate (CuSnO3) amorphous semiconductor for solar water splitting application
Authors:Bit Na Kim  Gab Kyung Seo  Sung Won Hwang  Hakki Yu  Byungmin Ahn  Hyungtak Seo  In Sun Cho
Affiliation:Department of Materials Science & Engineering and Energy Systems Research, Ajou University, Suwon 16499, South Korea
Abstract:Copper tin oxide, CuSnO3 (CSO), is an amorphous oxide semiconductor with a band-gap of 2.0–2.5 eV, and it is an attractive material for diverse applications such as transparent conducting oxides, transistors, and optoelectronic devices. In this study, we fabricated CSO thin films on fluorine-doped tin oxide (FTO)/glass substrates using a facile sol-gel process, and their optical properties, band structure and photoelectrochemical (PEC) properties were investigated using UV–Vis spectroscopy, photocurrent-density-potential (J-V) curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. The CSO film synthesized at 500 °C had an amorphous phase and a band gap of ~ 2.3 eV with n-type behavior, while the films synthesized at 550 °C and 600 °C had a phase mixture (SnO2 + CuO). We identified for the first time that the CSO film could be applied to photoelectrodes for photoelectrochemical water-splitting systems. Importantly, when combining the CSO with nanostructured WO3 film, i.e., the bilayer heterojunction of the a-CSO/WO3 showed enhanced PEC performances (cathodic shift of onset potential, increase of photocurrent generation and O2 evolution) compared to the pristine WO3 film.
Keywords:Amorphous semiconductor  Sol-gel method  Band structure  Photoelectrochemical performance  Heterojunction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号