Enhanced energy-storage properties of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics |
| |
Authors: | Qiang Li Zhaojun Yao Li Ning Shang Gao Bin Hu Guangzhi Dong Huiqing Fan |
| |
Affiliation: | State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi''an 710072, PR China |
| |
Abstract: | A series of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 (BNT-BST-100xNN) lead-free ceramics were fabricated using conventional solid-state reaction technique. The phase behavior, microstructure, dielectric, ac impedance and energy-storage properties of the sintered ceramics were systematically investigated. XRD patterns and surface SEM micrographs revealed the introduction of NaNbO3 didn't change the perovskite structure of BNT-BST at low doping level. The NaNbO3 doping gave rise to slimmer P-E loops and thus gained enhanced energy storage properties. Therefore, a maximum energy storage density of 1.03 J/cm3 was achieved at 85 kV/cm at x = 0.01 via increasing the dielectric breakdown strength (DBS). Temperature-dependent dielectric permittivity illustrated the enhanced relaxor characteristics, implying the long-rang ferroelectric order was further damaged due to the introduction of NaNbO3. The results above indicate the sintered ternary ceramics can be a promising lead-free candidate for energy storage capacitors. |
| |
Keywords: | C. Dielectric properties D. Perovskites E. Capacitors Energy-storage properties |
本文献已被 ScienceDirect 等数据库收录! |