首页 | 本学科首页   官方微博 | 高级检索  
     

基于Elman神经网络的传感器故障诊断研究
引用本文:丁硕,常晓恒,巫庆辉,杨友林,胡庆功. 基于Elman神经网络的传感器故障诊断研究[J]. 国外电子测量技术, 2014, 0(4): 78-81
作者姓名:丁硕  常晓恒  巫庆辉  杨友林  胡庆功
作者单位:渤海大学工学院,锦州121013
基金项目:国家自然科学基金资助项目(61104071)
摘    要:针对传统的传感器故障诊断技术的不足,提出一种基于Elman神经网络的故障诊断方法,建立了Elman网络故障诊断模型,利用小波包分解方法获取用于训练神经网络的特征能量谱,对所建立的模型进行训练。为了检验模型的实际诊断能力,以某动力系统管路流量传感器的4种典型故障诊断为例进行仿真实验,并和标准BP神经网络的诊断结果进行对比。仿真结果表明:基于Elman神经网络的故障诊断速度更快、准确率更高、泛化能力更强,验证了所提出方法的实用性和有效性。

关 键 词:Elman神经网络  BP神经网络  故障诊断  流量传感器  收敛速度  泛化能力

Study of sensor fault diagnosis method based on Elman neural network
Ding Shuo,Chang Xiaoheng,Wu Qinghui,Yang Youlin,Hu Qinggong. Study of sensor fault diagnosis method based on Elman neural network[J]. Foreign Electronic Measurement Technology, 2014, 0(4): 78-81
Authors:Ding Shuo  Chang Xiaoheng  Wu Qinghui  Yang Youlin  Hu Qinggong
Affiliation:1.College of Engineering, Bohai University, Jinzhou 121013, China;)
Abstract:In view of disadvantages of traditional sensor fault diagnosis techniques,a fault diagnosis method based on Elman neural network is proposed and a diagnosis model based on Elman neural network is established.The characteristic energy spectrum which is used in network training is obtained by wavelet packet decomposition method and it is used in the training of the established model.To test the practical diagnosis ability of the model,4 kinds of typical fault diagnosis of a sensor of power system piping flow are taken as examples to conduct a simulation test.The diagnosis result of the model based on Elman neural network is compared with the result of standard BP neural network.The simulation result shows that the method based on Elman neural network has a faster diagnosis speed,higher accuracy and stronger generalization ability.The method proposed in this paper is verified to be practical and effective.
Keywords:Elman neural network  BP neural network  fault diagnosis  flow sensor  convergence speed  generalization ability
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号