首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure evolution through the α→γ phase transformation in a Ti-48 At. pct Al alloy
Authors:Tatsuo Kumagai  Morihiko Nakamura
Affiliation:(1) the 3rd Research Group, National Research Institute for Metals, 305 Ibaraki, Japan
Abstract:The αγ phase transformation during rapid quenching and subsequent isothermal aging has been investigated in a Ti-48 at pct Al alloy. The microstructure changes from a completely massively transformed γ-grain structure to a mixed microstructure of the massively transformed γ grains and the untransformed (meaning massively untransformed) fine α 2/γ lamellae with an increase in the cooling rate from the high-temperature α phase field. Fine γ grains are generated from these fine α 2/γ lamellae by subsequent again at 1323 K. The fine γ grains contain many defects, such as dislocations, microtwins (or stacking faults), domain boundaries, and variants, which are frequently observed in the massive γ grains. This result suggests that the formation mechanism of the fine γ grains during aging is similar to that of the massive γ grains. When the fine γ/γ lamellar sample, which is formed by preliminary aging at a lower temperature (1173 K), is aged at a higher temperature (1323 K), apparent changes in microstructure could not be recognized. This result indicates that the fine γ-grain formation is closely related to the α 2γ phase transformation in the fine α 2/γ lamellae. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformation Committees.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号