首页 | 本学科首页   官方微博 | 高级检索  
     


Electrostatic nanolithography in polymers using atomic force microscopy
Authors:Lyuksyutov Sergei F  Vaia Richard A  Paramonov Pavel B  Juhl Shane  Waterhouse Lynn  Ralich Robert M  Sigalov Grigori  Sancaktar Erol
Affiliation:Department of Physics, The University of Akron, Akron, Ohio 44325, USA. sfl@physics.uakron.edu
Abstract:The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1-100 nm) and submicrometre (100-1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics, data storage, optoelectronics, displays, sacrificial templates and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography), photolithography, electron-beam lithography, block-copolymer templating and dip-pen lithography, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique--electrostatic nanolithography using atomic force microscopy--that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (10(2)-10(5) nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip-film contact.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号