首页 | 本学科首页   官方微博 | 高级检索  
     


Spanning Trees and the Complexity of Flood-Filling Games
Authors:Kitty Meeks  Alexander Scott
Affiliation:1. Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford, OX1 3LB, UK
Abstract:We consider problems related to the combinatorial game (Free-) Flood-It, in which players aim to make a coloured graph monochromatic with the minimum possible number of flooding operations. We show that the minimum number of moves required to flood any given graph G is equal to the minimum, taken over all spanning trees T of G, of the number of moves required to flood T. This result is then applied to give two polynomial-time algorithms for flood-filling problems. Firstly, we can compute in polynomial time the minimum number of moves required to flood a graph with only a polynomial number of connected subgraphs. Secondly, given any coloured connected graph and a subset of the vertices of bounded size, the number of moves required to connect this subset can be computed in polynomial time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号