首页 | 本学科首页   官方微博 | 高级检索  
     


Low-Latency Factorization Architecture for Algebraic Soft-Decision Decoding of Reed–Solomon Codes
Authors:Jun Ma Vardy   A. Zhongfeng Wang
Affiliation:Univ. of California, San Diego;
Abstract:Bivariate polynomial factorization is an important stage of algebraic soft-decision decoding of Reed-Solomon (RS) codes and contributes to a significant portion of the overall decoding latency. With the exhaustive search-based root computation method, factorization latency is dominated by the root computation step, especially for RS codes defined over very large finite fields. The root-order prediction method proposed by Zhang and Parhi only improves average latency, but does not have any effect on the worst-case latency of the factorization procedure. Thus, neither approach is well-suited for delay-sensitive applications. In this paper, a novel architecture based on direct root computation is proposed to greatly reduce the factorization latency. Direct root computation is feasible because in most practical applications of algebraic soft-decision decoding of RS codes, enough decoding gain can be achieved with a relatively low interpolation cost, which results in a bivariate polynomial with low Y-degree. Compared with existing works, not only does the new architecture have a significantly smaller worst-case decoding latency, but it is also more area efficient since the corresponding hardware for routing polynomial coefficients is eliminated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号