首页 | 本学科首页   官方微博 | 高级检索  
     

径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算
引用本文:王谦,谭茂金,石玉江,李高仁,程相志,罗伟平. 径向基函数神经网络法致密砂岩储层相对渗透率预测与含水率计算[J]. 石油地球物理勘探, 2020, 55(4): 864-872. DOI: 10.13810/j.cnki.issn.1000-7210.2020.04.018
作者姓名:王谦  谭茂金  石玉江  李高仁  程相志  罗伟平
作者单位:1. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083;2. 中国石油长庆油田勘探开发研究院, 陕西西安 710021;3. 中国石油勘探开发研究院, 北京 100083;4. 中国石油塔里木油田公司勘探开发研究院, 新疆库尔勒 841000
基金项目:本项研究受国家科技重大专项“鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程”(2016ZX05050)和国家自然科学基金项目“有机页岩电学特性多尺度分析与测井解释新方法”(41774144)联合资助。
摘    要:致密砂岩储层具有物性差、孔隙结构复杂、非均质性强等特点,导致利用传统方法难以精确预测或计算其相对渗透率和含水率。为此,文中提出基于径向基函数(RBF)的神经网络预测相对渗透率方法:在介绍RBF神经网络原理的基础上,选择高斯函数和最近邻聚类算法构建网络模型;以含水饱和度、核磁束缚水饱和度、孔隙度、渗透率等四参数为输入,油、水相对渗透率为输出,根据误差分析确定最佳相对渗透率预测网络模型及参数;最后采用分流量方程计算得到储层含水率。将该方法应用于鄂尔多斯盆地陇东地区延长组长8储层,预测的油、水相对渗透率与相渗实验结果一致,计算的含水率与测试结果吻合。

关 键 词:致密砂岩  径向基函数(RBF)  相对渗透率  分流量方程  含水率  
收稿时间:2019-10-14

Prediction of relative permeability and calculation of water cut of tight sandstone reservoir based on radial basis function neural network
WANG Qian,TAN Maojin,SHI Yujiang,LI Gaoren,CHENG Xiangzhi,LUO Weiping. Prediction of relative permeability and calculation of water cut of tight sandstone reservoir based on radial basis function neural network[J]. Oil Geophysical Prospecting, 2020, 55(4): 864-872. DOI: 10.13810/j.cnki.issn.1000-7210.2020.04.018
Authors:WANG Qian  TAN Maojin  SHI Yujiang  LI Gaoren  CHENG Xiangzhi  LUO Weiping
Affiliation:1. School of Geophysics and Information Technology in China University of Geosciences, Beijing 100083, China;2. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710021, China;3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;4. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla, Xinjiang 841000, China
Abstract:Tight sandstone reservoir is characterized by poor physical properties,complex pore structures and strong heterogeneity. It is difficult for conventional methods to predict or estimate the relative permeability and water cut. This paper proposes to use the radial basis function (RBF) neural network to predict the relative permeability of tight sandstone reservoir. Based on the RBF neural network,we choose the Gaussian function and the nearest neighbor algorithm to build a network model,and take water saturation,nuclear magnetic irreducible water saturation,porosity and permeability as inputs and relative oil and water permeability as output to define the best relative permeability network model and parameters after error analysis,and finally calculate the water cut using the split flow equation. For the Chang 8 reservoir of the Yanchang Formation in the Longdong area of the Ordos Basin,the relative oil and water permeability predicted by this method is consistent with the experimental results,and the water cut calculated is consistent with the measured value too.
Keywords:tight sandstone  radial basis function (RBF)  relative permeability  split flow equation  water cut  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油地球物理勘探》浏览原始摘要信息
点击此处可从《石油地球物理勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号