首页 | 本学科首页   官方微博 | 高级检索  
     

基于超虚干涉法约束的模糊C均值聚类地震初至自动提取
引用本文:谭家炜,李静,李飞达,曾昭发. 基于超虚干涉法约束的模糊C均值聚类地震初至自动提取[J]. 石油地球物理勘探, 2020, 55(5): 979-990. DOI: 10.13810/j.cnki.issn.1000-7210.2020.05.006
作者姓名:谭家炜  李静  李飞达  曾昭发
作者单位:1. 吉林大学地球探测科学与技术学院, 吉林长春 130021;2. 吉林省勘查地球物理研究院, 吉林长春 130062
基金项目:本项研究受国家自然科学基金面上项目“基于机器学习的时移地球物理干热岩储层监测与预测”(41874134)、吉林省自然科学基金“近地表地下空间三维透视”(20200201216JC)和中国科协青年托举人才项目(2019QNRC001)联合资助。
摘    要:在静校正和层析成像等地震数据处理中,准确并快速地拾取初至是随后速度结构成像和地震资料综合解释的前提。手动拾取方法难以适用于海量地震数据处理,且存在人为误差。对于低信噪比地震数据,相关法、能量比值法(STA/LTA)、分形维法等常规自动拾取方法需不断调整参数以达到设定拾取精度,导致稳定性变差。为此,提出一种基于超虚干涉(SVI)约束的模糊C均值(FCM)聚类地震初至自动拾取方法。FCM聚类分析是一种非监督的机器学习方法,仅依赖数据本身进行分类,可更灵活、方便地应用于实际地震初至拾取;对于低信噪比数据,须预先利用SVI法加强远炮检距等弱初至信号的能量,提高地震数据的信噪比,以实现地震初至的准确、稳定拾取。理论模型数据和实际地震资料测试结果进一步表明了该方法的稳定性和高效性。

关 键 词:模糊C均值(FCM)  聚类分析  初至拾取  超虚干涉法(SVI)  层析成像  
收稿时间:2020-01-14

Automatic pick-up of seismic P-wave first arrivals via fuzzy C-means method constrained by super-virtual interferometry
TAN Jiawei,LI Jing,LI Feida,ZENG Zhaofa. Automatic pick-up of seismic P-wave first arrivals via fuzzy C-means method constrained by super-virtual interferometry[J]. Oil Geophysical Prospecting, 2020, 55(5): 979-990. DOI: 10.13810/j.cnki.issn.1000-7210.2020.05.006
Authors:TAN Jiawei  LI Jing  LI Feida  ZENG Zhaofa
Affiliation:1. College of Geo-Exploration Science and Techno-logy, Jilin University, Changchun, Jilin 130021, China;2. Geophysical Exploration Institute of Jilin Pro-vince, Changchun, Jilin 130062, China
Abstract:In seismic data processing,such as static correction and seismic tomography,accurate and quick pick-up of first arrivals is the basic premise of velocity structure imaging and comprehensive interpretation of seismic data.It is difficult to finish big data through manual picking,and manual method may cause man-made errors.For seismic data with low signal-to-noise ratio (SNR),conventional automatic picking methods,such as correlation method,energy ratio method (STA/LTA),and fractal method,should keep adjusting parameters to achieve desired accuracy,therefore resulting in poor stability.This paper proposes a method to automatically pick up first arrivals based on fuzzy C-means and super-virtual interferometry.Fuzzy C-means (FCM) clustering analysis is an unsupervised machine learning method.It only depends on data themselves for classification,so it can be more flexibly and conveniently applied for picking actual seismic first arrivals.For data with low SNR,to get accurate and stable first arrivals,first super-virtual interferometry (SVI) is used to enhance the energy of weak first arrival signals,such as far offsets,and improve the SNR of the seismic data.Tests on theoretical model data and actual land seismic data show that the method provides a stable and efficient technical means for automatically picking up first arrivals from big seismic data.
Keywords:fuzzy C-means  cluster analysis  first arrival picking  super-virtual interferometry  P-wave tomography  
本文献已被 CNKI 等数据库收录!
点击此处可从《石油地球物理勘探》浏览原始摘要信息
点击此处可从《石油地球物理勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号