首页 | 本学科首页   官方微博 | 高级检索  
     


Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo
Authors:Ravi Kumar M N V  Sameti M  Mohapatra S S  Kong X  Lockey R F  Bakowsky U  Lindenblatt G  Schmidt H  Lehr C M
Affiliation:Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University Saarbrücken, D 66123, Germany.
Abstract:The potential of cationic SiO2 nanoparticles was investigated for in vivo gene transfer in this study. Cationic SiO2 nanoparticles with surface modification were generated using amino-hexyl-amino-propyltri-methoxysilane (AHAPS). The zeta potential of the nanoparticles at pH = 7.4 varied from -31.4 mV (unmodified particles; 10 nm) to +9.6 mV (modified by AHAPS). Complete immobilization of DNA at the nanoparticle surface was achieved at a particle ratio of 80 (w/w nanoparticle/DNA ratio). The surface modified nanoparticle had a size of 42 nm with a distribution from 10-100 nm. The ability of these particles to transfect pCMVbeta reporter gene was tested in Cos-1 cells, and optimum results were obtained in the presence of FCS and chloroquine at a particle ratio of 80. These nanoparticles were tested for their ability to transfer genes in vivo in the mouse lung, and a two-times increase in the expression levels was found with silica particles in comparison to EGFP alone. Very low or no cell toxicity was observed, suggesting silica nanoparticles as potential alternatives for gene transfection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号