首页 | 本学科首页   官方微博 | 高级检索  
     


Leakage current and defect characterization of pn-source/drain diodes
Authors:Guntrade Roll  Matthias Goldbach  Lothar Frey
Affiliation:a Qimonda Dresden GMBH and Co OHG, 01109 Dresden, Germany
b Fraunhofer Institute for Integrated Systems and Device Technology, 91058 Erlangen, Germany
Abstract:A good control of the transient enhanced dopant diffusion is needed for MOSFET scaling down to the sub 50 nm regime. Carbon ion implant is known to significantly suppress the transient enhanced boron diffusion. However, carbon implantation is also reported to increase diode leakage current. This paper investigates the impact of ion implantation and annealing conditions during source/drain extension formation on leakage current behavior of boron/phosphorous diodes of PFET transistors. Analyzing the leakage current it is difficult to distinguish between the influence of the increased electric field due to the reduced diffusion and possible additional trap centers in the space charge region. This distinction can be made by electrical characterization, as shown in this paper. The leakage current mechanism is found to be trap assisted tunneling with phonon interaction. The corresponding trap energy within the band gap is 0.58 ± 0.10 eV. The carbon concentration in the space charge region measured by SIMS is below the detection limit. Also in electrical measurements, which are more sensitive, no significant influence of carbon related traps is observed. The leakage current is increased by the application of a Flash Anneal additionally to a Rapid Thermal Anneal for recrystallization of the silicon substrate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号