首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于局部加权均值的领域适应学习框架
引用本文:皋军, 黄丽莉, 孙长银. 一种基于局部加权均值的领域适应学习框架. 自动化学报, 2013, 39(7): 1037-1052. doi: 10.3724/SP.J.1004.2013.01037
作者姓名:皋军  黄丽莉  孙长银
作者单位:1.东南大学自动化学院 南京 210096;;;2.盐城工学院信息工程学院 盐城 224001;;;3.苏州大学江苏省计算机信息处理重点实验室 苏州 215006;;;4.安徽理工大学电气与信息工程学院 淮南 232001
基金项目:国家自然科学基金(61272210, 60903100), 江苏省自然科学基金(BK2011417), 苏州大学江苏省计算机信息处理技术重点实验室开放课题(KJS1126), 江苏省新型环保重点实验室开放课题(AE201068), 江苏省高校优秀中青年教师和校长境外研修计划资助
摘    要:最大均值差异(Maximum mean discrepancy, MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而, MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此, 本文通过引入局部加权均值的方法和理论到MMD中, 提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy, PMLWD)度量,%从而一定程度上使得PMLWD更能有效度量源域和目标域中局部分块之间的分布和结构上的差异,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework, LDAF), 在LDAF框架下, 衍生出两种领域适应学习方法: LDAF_MLC和 LDAF_SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.

关 键 词:迁移学习   领域适应学习   局部加权均值   投影最大局部加权均值差异   基于局部加权均值的领域适应学习框架
收稿时间:2012-10-23
修稿时间:2013-01-15
本文献已被 CNKI 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号