首页 | 本学科首页   官方微博 | 高级检索  
     

求解圆柱壳稳态谐响应的微分求积单元法
引用本文:姚熊亮,叶曦. 求解圆柱壳稳态谐响应的微分求积单元法[J]. 振动与冲击, 2013, 32(16): 158-163. DOI:  
作者姓名:姚熊亮  叶曦
作者单位:哈尔滨工程大学 船舶工程学院,黑龙江 哈尔滨 150001
摘    要:本文以Donnell经典壳体振动微分方程为基础,研究微分求积单元法(DQEM)在圆柱壳稳态谐响应计算中的应用。研究结果表明:微分求积单元法可较为方便的处理多种边界条件;与有限元法相比,微分求积单元法直接面向问题的微分方程,可用较少的节点获得较高的计算精度,计算效率较高。本文结果可为微分求积单元法在结构动力响应问题求解中的应用提供参考。

关 键 词:微分求积单元法   圆柱壳   稳态谐响应   有限元法   解析法 
收稿时间:2012-01-18
修稿时间:2012-06-21

The application of DQEM to the cylindrical shells steady-state harmonic response
YAO Xiong-liang,YE Xi. The application of DQEM to the cylindrical shells steady-state harmonic response[J]. Journal of Vibration and Shock, 2013, 32(16): 158-163. DOI:  
Authors:YAO Xiong-liang  YE Xi
Affiliation:College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:Based on the classical shell theory of Donnell’s, the application of DQEM about the cylindrical shells steady-state harmonic response was presented. The results show that DQEM is convenient to calculate the response with different boundary conditions. And with the comparison between FEM and DQEM, the latter is oriented to the differential equation of problem, and can obtain the sufficient calculation precision with the less nodes number, the computational efficiency is higher. The results in this article could provide reference for the research about the application of DQEM to the structure dynamic response.
Keywords:DQEMcylindrical shellssteady-state harmonic responseFEManalytical method
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号