首页 | 本学科首页   官方微博 | 高级检索  
     


Design and Pharmacodynamics of Recombinant Fungus Defensin NZL with Improved Activity against Staphylococcus hyicus In Vitro and In Vivo
Authors:He Liu  Na Yang  Da Teng  Ruoyu Mao  Ya Hao  Xuanxuan Ma  Jianhua Wang
Affiliation:1.Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.L.); (N.Y.); (D.T.); (R.M.); (Y.H.); (X.M.);2.Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
Abstract:Staphylococcus hyicus is recognized as a leading pathogen of exudative epidermitis in modern swine industry. Antimicrobial peptides are attractive candidates for development as potential therapeutics to combat the serious threats of the resistance of S. hyicus. In this study, a series of derivatives were designed based on the NZ2114 template with the aim of obtaining peptides with more potent antimicrobial activity through changing net positive charge or hydrophobicity. Among them, a variant designated as NZL was highly expressed in Pichia pastoris (P. pastoris) with total secreted protein of 1505 mg/L in a 5-L fermenter and exhibited enhanced antimicrobial activity relative to parent peptide NZ2114. Additionally, NZL could kill over 99% of S. hyicus NCTC10350 in vitro within 8 h and in Hacat cells. The results of membrane permeabilization assay, morphological observations, peptide localization assay showed that NZL had potent activity against S. hyicus, which maybe kill S. hyicus through action on the cell wall. NZL also showed an effective therapy in a mouse peritonitis model caused by S. hyicus, superior to NZ2114 or ceftriaxone. Overall, these findings can contribute to explore a novel potential candidate against S. hyicus infections.
Keywords:fungal defensin   peptide design   S. hyicus   antimicrobial mechanism   efficacy in vivo
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号