首页 | 本学科首页   官方微博 | 高级检索  
     


Power quality enhancement in autonomous microgrid operation using Particle Swarm Optimization
Affiliation:1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China;2. Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
Abstract:This paper presents an optimal power control strategy for an autonomous microgrid operation based on a real-time self-tuning method. The purpose of this work is to improve the quality of power supply of the microgrid where some Distributed Generation (DG) units are connected to the grid. Voltage and frequency regulation, and power sharing are the main performance parameters which are considered in this work, particularly during the transition from grid-connected to islanding operation mode and also during load change. In this work, two typical DG units are connected in parallel to configure the microgrid. The controller scheme is composed of an inner current control loop and an outer power control loop based on a synchronous reference frame and the conventional PI regulators. The power controller employs two typical strategies: active–reactive power (PQ) control strategy and voltage–frequency (Vf) control strategy. Particle Swarm Optimization (PSO) is an intelligent searching algorithm that is applied for real-time self-tuning of the power control parameters. The proposed strategy in this paper is that both DG units adopt the Vf control mode once the microgrid is islanded in order to regulate the microgrid voltage and frequency, whereas during the load change, only the second DG unit invokes the PQ control mode to ensure maximum power exportation. The results show that the proposed controller offers an excellent response to satisfy the power quality requirements and proves the validity of the proposed strategy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号