过参数卷积与CBAM融合的胸腔积液肿瘤细胞团块分割网络 |
| |
作者姓名: | 陈思卓 赵萌 石凡 黄薇 |
| |
作者单位: | 学习型智能系统教育部工程研究中心, 天津 300384;天津理工大学计算机科学与工程学院, 天津 300384 |
| |
基金项目: | 国家自然科学基金项目(62020106004,92048301,61703304);大学生创新创业训练计划项目(202010060038) |
| |
摘 要: |  目的 胸腔积液肿瘤细胞团块的分割对肺癌的筛查有着积极作用。胸腔积液肿瘤细胞团块显微图像存在细胞聚集、对比度低和边界模糊等问题,现有网络模型进行细胞分割时无法达到较高精度。提出一种基于UNet网络框架,融合过参数卷积与注意力机制的端到端语义分割模型DOCUNet (depthwise over-parameterized CBAM UNet)。方法 将UNet网络中的卷积层替换为过参数卷积层。过参数卷积层结合了深度卷积和传统卷积两种卷积,保证网络深度不变的同时,提高模型对图像特征的提取能力。在网络底端的过渡区域,引入结合了通道注意力与空间注意力机制的注意力模块CBAM (convolutional block attention module),对编码器提取的特征权重进行再分配,增强模型的分割能力。结果 在包含117幅显微图像的胸腔积液肿瘤细胞团块数据集上进行5折交叉实验。平均IoU (intersection over union)、Dice系数、精确率、召回率和豪斯多夫距离分别为0.858 0、0.920 4、0.928 2、0.920 3和18.17。并且与UNet等多种已存在的分割网络模型进行对比,IoU、Dice系数和精确率、召回率相较于UNet提高了2.80%、1.65%、1.47%和1.36%,豪斯多夫距离下降了41.16%。通过消融实验与类激活热力图,证明加入CBAM注意力机制与过参数卷积后能够提高网络分割精度,并能使网络更加专注于细胞的内部特征。结论 本文提出的DOCUNet将过参数卷积和注意力机制与UNet相融合,实现了胸水肿瘤细胞团块的有效分割。经过对比实验证明所提方法提高了细胞分割的精度。
|
关 键 词: | 胸腔积液肿瘤细胞团块 UNet 注意力机制 细胞分割 过参数卷积 |
收稿时间: | 2022-09-01 |
修稿时间: | 2022-11-23 |
|
| 点击此处可从《中国图象图形学报》浏览原始摘要信息 |
|
点击此处可从《中国图象图形学报》下载免费的PDF全文 |
|