首页 | 本学科首页   官方微博 | 高级检索  
     


3D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING
Authors:YU Haiqi  ZHU Miaoyong
Affiliation:School of Materials and Metallurgy, Northeastern University
Abstract:A new 3D mathematical model describing the electromagnetic stirring (EMS) in the round billet continuous casting mold was developed and the method combining the finite element--finite volume was used to solve the Maxwell's equations and the turbulent Navier-Stokes equations. The characteristics of magnetic field, flow field, temperature field and inclusion trajectory during EMS were analyzed considering the influences of the exciting current intensity and frequency. The simulated magnetic field in the mold is in good agreement with the measured data in the real steel plant, the electromagnetic force is circumferential distribution at the horizontal section of billet. Molten steel forms two pair of recirculation zones in the longitudinal section of the mold and recirculates at the horizontal section. Most of superheated molten steel is stranded in the upper region of mold, the core temperature of billet reduces dramatically and the temperature gradient at the solidifying forefront of billet increases. Most inclusion particles accumulate in the upper zone of mold and do a swirl--like motion. The flow behaviour, temperature distribution and inclusion motion in the mold are all influenced obviously by the exciting current intensity and frequency.
Keywords:round billet mold  electromagnetic stirring (EMS)  electromagnetic field  flow field  Temperature field  Inclusion  numerical simulation
本文献已被 万方数据 等数据库收录!
点击此处可从《金属学报》浏览原始摘要信息
点击此处可从《金属学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号