首页 | 本学科首页   官方微博 | 高级检索  
     

基于重要抽样的软件统计测试加速
引用本文:颜炯,王戟,陈火旺. 基于重要抽样的软件统计测试加速[J]. 计算机工程与科学, 2005, 27(3): 64-66
作者姓名:颜炯  王戟  陈火旺
作者单位:国防科技大学计算机学院,湖南,长沙,410073;国防科技大学计算机学院,湖南,长沙,410073;国防科技大学计算机学院,湖南,长沙,410073
基金项目:国家自然科学基金资助项目(90104007,60233020),国家863计划资助项目(2001AA113202,2001AA113190)
摘    要:本文提出一种基于重要抽样的软件统计测试加速方法,该方法通过调整软件Markov链使用模型的迁移概率,在根据统计测试结果得到软件可靠性无偏估计的前提下,可以有效提高安全攸关软件的测试效率,部分解决了安全攸关软件统计测试时间和费用开销过大的问题。同时,本文给出了计算优化迁移概率的模拟退火算法。实验仿真结果表明,该方法可以有效地提高安全攸关软件统计测试的效率。

关 键 词:统计测试  重要抽样  可靠性估计  模拟退火
文章编号:1007-130X(2005)03-0064-03
修稿时间:2004-04-01

Software Statistical Test Acceleration Based on Importance Sampling
YAN Jiong,WANG Ji,CHEN Huo-wang. Software Statistical Test Acceleration Based on Importance Sampling[J]. Computer Engineering & Science, 2005, 27(3): 64-66
Authors:YAN Jiong  WANG Ji  CHEN Huo-wang
Abstract:The Markov chain usage model based statistical testing for safety critical software often costs too much time, thus makes the software reliability estimation very difficult. This paper discusses software statistical testing acceleration based on the importance sampling technique, which is one of the classical techniques for improving the efficiency of Monte Carlo simulation. By adjusting the transition probabilities in Markov chain usage models,we can greatly improve the efficiency of software statistical testing while the unbiased reliability estimates can still be computed. The simulated annealing algorithm for computing optimal transition probabilities of the Markov chain usage model is also presented. A case study shows the method can effectively accelerate software statistical testing.
Keywords:statistical testing  importance sampling  reliability estimation  simulated annealing
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号