首页 | 本学科首页   官方微博 | 高级检索  
     

基于形态学特征的对虾完整性识别方法构建
引用本文:洪 辰,刘子豪,汪许倩,高 乐,郑震宇,徐志玲,张 俊. 基于形态学特征的对虾完整性识别方法构建[J]. 食品安全质量检测学报, 2021, 12(22): 8666-8673
作者姓名:洪 辰  刘子豪  汪许倩  高 乐  郑震宇  徐志玲  张 俊
作者单位:嘉兴学院 信息科学与工程学院,嘉兴学院 信息科学与工程学院,嘉兴学院 信息科学与工程学院,嘉兴学院 信息科学与工程学院,嘉兴学院 信息科学与工程学院,中国计量大学 质量与安全工程学院,浙江大学 生物系统工程与食品科学学院
基金项目:浙江省基础公益研究计划项目(LGG21F030013、LGG20F030006、LGG19F030010);浙江省教育科学规划项目(2022);嘉兴市公益计划项目(2020AY10009 2018AY11008);嘉兴学院科研启动基金(CD70519085);浙江省大学生科技创新训练计划项目(项目编号:2021R417017);嘉兴学院大学生SRT科研创新项目(CD8517211173、CD8517211454、CD8517201005)
摘    要:目的 针对对虾加工过程中缺损对虾混入完整对虾从而降低对虾产品外观品质的问题, 构建基于形态学特征的对虾完整性识别方法。方法 首先, 使用灰度差异法处理对虾图像, 经过连通域、中值滤波等形态学操作后, 得到较为完整的感兴趣区域图像, 再对其采取二值化、轮廓化等操作; 然后, 对轮廓提取骨架线, 并求轮廓内最大内切圆直径以得到长宽比特征, 并求其圆度特征; 最后, 将以上2个特征作为判别对虾完整性的核心指标, 构建融合特征判别算法。结果 本研究所提算法应用于1063幅生鲜虾测试集图像中识别准确率达到99.25%, 相比于传统曲率法, 识别准确率提升了6.48%, 识别时间降低了1598.6 ms。结论 该方法具有较大优势和应用前景, 为开发大规模南美白对虾在线品质的无损检测装备提供关键技术。

关 键 词:南美白对虾  完整性识别  形态学特征  机器视觉  图像处理
收稿时间:2021-08-06
修稿时间:2021-11-27

Construction of completeness recognition method for shrimp (Litopenaeus vannamei) based on morphological characteristics
HONG Chen,LIU Zi-Hao,WANG Xu-Qian,GAO Le,ZHENG Zhen-Yu,XU Zhi-Ling,ZHANG Jun. Construction of completeness recognition method for shrimp (Litopenaeus vannamei) based on morphological characteristics[J]. Journal of Food Safety & Quality, 2021, 12(22): 8666-8673
Authors:HONG Chen  LIU Zi-Hao  WANG Xu-Qian  GAO Le  ZHENG Zhen-Yu  XU Zhi-Ling  ZHANG Jun
Affiliation:College of Information Science and Engineering,Jiaxing University,College of Information Science and Engineering,Jiaxing University,College of Information Science and Engineering,Jiaxing University,College of Information Science and Engineering,Jiaxing University,College of Information Science and Engineering,Jiaxing University,College of quality Safty Engineering,China Jiliang University,College of Biosystems Engineering and Food Science,Zhejiang University
Abstract:Objective To construct a completeness recognition method for shrimp (Litopenaeus vannamei) based on morphological characteristics to solve the problem of appearance quality deterioration by mixing the incomplete shrimp mixing into the sound clustered shrimp during the shrimp production processing. Methods Firstly, the shrimp image was processed by background grayscale difference method, the region of interest (ROI) of shrimp image were obtain after the morphological operation, median filtering, double-value, contouring and other operations; then, the skeleton line was extracted from the contour, and the maximum inscribed circle diameter in the contour was calculated to obtain the length width ratio of shrimp and its roundness characteristics; finally, taking the above 2 features as the core indexes to judge the integrity of shrimp, the fusion feature discrimination algorithm was constructed. Results The algorithm established in this study was applied to 1063 test set images of fresh shrimp and its recognition accuracy reached 99.25%, the recognition accuracy was improved by 6.48%, and the recognition time was reduced by 1598.6 ms compared with the traditional curvature method. Conclusion The proposed method has great advantages and application prospects, which providing the key technology for the development of nondestructive testing equipment for large-scale online quality of Litopenaeus vannamei.
Keywords:shrimp (Litopenaeus vannamei)   completeness recognition    morphological characteristics   machine vision   image processing
点击此处可从《食品安全质量检测学报》浏览原始摘要信息
点击此处可从《食品安全质量检测学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号