首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征参数归一化的鲁棒语音识别方法综述
作者姓名:肖云鹏  叶卫平
作者单位:北京师范大学 信息科学与技术学院,北京 100875
摘    要:目前,自动语音识别系统往往会因为环境中复杂因素的影响,造成训练环境和测试环境存在不匹配现象,使得识别系统性能大幅度下降,极大地限制了语音识别技术的应用范围。近年来,很多鲁棒语音识别技术成功地被提出,这些技术的目标都是相同的,主要是提高系统的鲁棒性,进而提高识别率。其中,基于特征的归一化技术简单而有效,常常被作为鲁棒语音识别的首选方法,它主要是通过对特征向量的统计属性、累积密度函数或功率谱的归一化来补偿环境不匹配产生的影响。该文主要对目前主流的归一化方法进行介绍,其中包括倒谱矩归一化方法、直方图均衡化方法以及调频谱归一化方法等。

关 键 词:鲁棒语音识别  倒谱均值归一化  高阶倒谱矩归一化  直方图均衡化  倒谱形状归一化  
本文献已被 万方数据 等数据库收录!
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号