首页 | 本学科首页   官方微博 | 高级检索  
     


Stress corrosion cracking of cold-worked austenitic stainless steels
Authors:A. Cigada  B. Mazza  P. Pedeferri  G. Salvago  D. Sinigaglia  G. Zanini
Affiliation:Istituto di Chimica-Fisica, Elettrochimica e Metallurgia del Politecnico di Milano, Centro di Studio del CNR sui Processi Elettrodici, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Abstract:Stress corrosion cracking (SCC) of AISI 304L and AISI 316L stainless steels, cold-worked under various conditions (i.e. at different degrees of deformation obtained by drawing and rolling at room temperature and at liquid nitrogen temperature) has been carried out in H2O containing 1000 ppm Cl? at 250°C and in a boiling MgCl2 solution. The effect of heat treatments at 400 and 900°C on the SCC of previously cold-worked steels has also been studied. Particular attention was directed towards heat treatment at 400°C. In steels deformed at room temperature, it increases the SCC resistance. By contrast, for steels deformed at liquid nitrogen temperature, heat treatment at 400°C reduces the SCC resistance if carried out for short periods of time (1–6 h). Hardness measurements, structural analyses via X-rays, scanning and transmission electron microscopy (SEM and TEM), as well as modified Strauss tests, seem to prove that reduced stress corrosion resistance is not to be related to the chromium-rich carbides precipitation which could have been accelerated by the presence of α′-martensite. Instead, they tend to suggest that perhaps this phenomenon is connected to an increase in the level of internal micro-stresses which are generated by a reciprocal re-ordering of the α′ and γ structural phases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号