首页 | 本学科首页   官方微博 | 高级检索  
     


The sintering kinetics of ultrafine tungsten carbide powders
Authors:AK Nanda Kumar  M Watabe  K Kurokawa
Affiliation:aLaboratory of High Temperature Materials, Centre for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Japan;bOhta Seiki Co. Ltd., Japan
Abstract:The sintering kinetics of nano grained tungsten carbide (n-WC) powders has been analyzed by non isothermal and isothermal sintering. Non isothermal sintering experiments reveal a multi staged sintering process in which at least three major sub-stages can be distinguished. The isothermal shrinkage strain also exhibits an asymptotic behavior with time indicating an end point density phenomenon in most of the temperature ranges. Combined microstructural and kinetic data analyses suggest that differences in the sinterability of inter and intra agglomerate pore phases introduce sub-stages in the sintering process which manifest as stagnant density regions in both the isothermal and non isothermal experiments. Kinetic analysis of the data reveals very low activation energies for sintering suggesting that particle rearrangement and agglomeration at low temperatures may be brought about by surface diffusion leading to neck growth and grain rotation. At higher temperatures rapid grain boundary diffusion by overheating along inter particle boundaries induced by sparking may be a dominant sintering mechanism. Although grain growth and densification in conventional WC powders generally obey an inverse relation to each other, in n-WC powders both can act synergistically to increase the net densification rate. In fact, complete densification cannot be achieved in n-WC powders without grain growth as one abets the other.
Keywords:Tungsten carbide  Nano particles  Sintering  Agglomeration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号