Computed electronic and optical properties of SnO2 under compressive stress |
| |
Affiliation: | 1. Institute of Condensed Matter and Nanosciences - NAPS, Université catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium;2. CMT-group, Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;1. Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University and School of Earth and Space Sciences, Peking University, Beijing 100871, China;2. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA;3. Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201900, China;4. Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany;5. HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439, USA;6. GeoSoilEnviroCARS, The University of Chicago, Chicago, IL 60637, USA;7. Institute for Study of the Earth''s Interior, Okayama University, Misasa, Tottori 682-0193, Japan;8. Key Laboratory of High-temperature and High-pressure Study of the Earth''s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;1. LaMCScI, Faculty of Sciences, P.O. Box 1014, Mohammed V University of Rabat, Morocco;2. Institute of Nanomaterials and Nanotechnology MAScIR Rabat, Morocco;3. Hassan II Academy of Science and Technology Rabat, Morocco;1. School of Physics and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;2. Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand;3. Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;4. Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;1. Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 780-0003 Ñuñoa, Santiago, Chile;2. Instituto de Energía Solar and Dept. Tecnologías Especiales, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Spain;3. Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile;4. Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes, 41012 Sevilla, Spain |
| |
Abstract: | We consider the effects of three different types of applied compressive stress on the structural, electronic and optical properties of rutile SnO2. We use standard density functional theory (DFT) to determine the structural parameters. The effective masses and the electronic band gap, as well as their stress derivatives, are computed within both DFT and many-body perturbation theory (MBPT). The stress derivatives for the SnO2 direct band gap are determined to be 62, 38 and 25 meV/GPa within MBPT for applied hydrostatic, biaxial and uniaxial stress, respectively. Compared to DFT, this is a clear improvement with respect to available experimental data. We also estimate the exciton binding energies and their stress coefficients and compute the absorption spectrum by solving the Bethe–Salpeter equation. |
| |
Keywords: | Density functional theory Transparent conducting oxides Absorption spectrum Tin dioxide |
本文献已被 ScienceDirect 等数据库收录! |
|