首页 | 本学科首页   官方微博 | 高级检索  
     


The glass transition temperature of filled polymers and its effect on their physical properties
Authors:D H Droste  A T Dibenedetto
Abstract:The glass transition temperature, dynamic shear moduli, and bulk viscosities of Phenoxy PKHH (a thermoplastic polymer made from bisphenol-A and epichlorohydrin) filled with glass beads and Attapulgite clay were investigated. The glass temperature of the polymer increased with increasing filler concentration and with increasing specific surface area of the filler. The data were interpreted by assuming that interactions between filler particles and the polymer matrix reduce molecular mobility and flexibility of the polymer chains in the vicinity of the interfaces. From the measured moduli and the viscosities of the filled and unfilled materials, the modulus reinforcement ratio in the glassy state and the relative viscosity in the viscous state were obtained as functions of the filler type and concentration. The relative modulus for the glass bead composite system follows the Kerner equation, while the clay-filled systems exhibit slightly greater reinforcement. The relative viscosities are strongly temperature dependent and do not follow conventional viscosity predictions for suspensions. It is suggested that the filler has a twofold effect on the viscosity of the composite materials; one is due to its mechanical presence and the other is due to modifications of part of the polymer matrix caused by interaction. Using the WLF equation to express all modifications of the matrix, one can isolate a purely mechanical contribution to the viscosity reinforcement. This mechanical part is approximately bounded by the theoretical predictions of Kerner,32 Mooney, 36 and Brodnyan,41 for suspension viscosities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号