首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of time and temperature on the mechanical behavior of a “plasticized” epoxy resin under different loading modes
Authors:A E Moehlenpah  O Ishai  A T Dibenedetto
Abstract:Epoxy–Versamid specimens were loaded in tension, compression, and flexure at different strain rates and temperatures to determine mode of failure, yield stress and strain, and tangent and relaxation moduli. Stress-strain curves were used to define brittle, ductile, ductile-rubbery, and rubbery modes of behavior which prevailed in different temperature-strain rate regions. The time-temperature superposition principle was applied to yield stress, initial tangent moduli, and relaxation moduli data for all three types of loading. The transition regions, tangent and relaxation moduli, and shift factors were the same in tension, compression, and flexure. Thus the most convenient mode of loading can be used to determine the general time-temperature dependence. The ratio of compressive-to-tensile yield stress was almost constant over the entire ductile region. Flexural yielding data were used to predict yield stress in tension and compression, and stress relaxation master curves were shown to be related to elastic modulus vs. strain rate curves. The yielding phenomenon was interpreted using Eyring's theory of non-Newtonian viscoplastic flow. The apparent activation energy and activation volume were larger for tension than compression. A theory is offered to explain why yielding can occur in a cross-linked system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号