首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的二氧化碳非混相驱效果预测
引用本文:王杰祥,陈征,靖伟,陆国琛,牛志伟. 基于支持向量机的二氧化碳非混相驱效果预测[J]. 石油钻探技术, 2015, 43(2): 84-89. DOI: 10.11911/syztjs.201502015
作者姓名:王杰祥  陈征  靖伟  陆国琛  牛志伟
作者单位:1.中国石油大学(华东)石油工程学院, 山东青岛 266580;
基金项目:国家高技术研究发展计划(“863”计划)项目“CO2驱油的油藏工程设计技术研究”(编号:2009AA063402)部分研究内容
摘    要:目前国内缺乏一种快速、准确预测CO2非混相驱油效果的方法,为了解决这一问题,选取剩余地层压力与混相压力之比、孔隙度、渗透率、油藏中深、地层平均有效厚度、地层温度、原油相对密度、含油饱和度、原油黏度、渗透率变异系数、注采比、注入速度和水气交替注入比等13个地质及工程参数作为输入参数,平均单井日增油量作为输出参数构建了预测CO2非混相驱效果的支持向量机预测模型.以国内6个CO2非混相驱项目和1个CO2混相驱项目为学习样本,2个CO2非混相驱项目和1个CO2混相驱项目为检测样本检测了支持向量机预测模型的准确度,结果表明,3个检测样本的预测值与实际值的平均相对误差为5.57%,满足工程要求.利用该模型预测了腰英台油田CO2非混相驱井组的增产效果,与实际增产效果相比,相对误差仅为1.30%.这表明,采用支持向量机方法对CO2非混相驱油效果进行预测可行且有效. 

关 键 词:二氧化碳驱   非混相驱   支持向量机   效果预测   腰英台油田
收稿时间:2014-08-10

Prediction of the Effect CO2 Immiscible Flooding Based on Support Vector Machine
Wang Jiexiang;Chen Zheng;Jing Wei;Lu Guochen;Niu Zhiwei. Prediction of the Effect CO2 Immiscible Flooding Based on Support Vector Machine[J]. Petroleum Drilling Techniques, 2015, 43(2): 84-89. DOI: 10.11911/syztjs.201502015
Authors:Wang Jiexiang  Chen Zheng  Jing Wei  Lu Guochen  Niu Zhiwei
Affiliation:1.School of Petroleum Engineering, China University of Petroleum(Huadong), Qingdao, Shandong, 266580, China;2.Tianjin Bohai Oilfield Institute, CNOOC, Tianjin, 300452, China;3.Department of Field Development, Sinopec Northeast Oil & Gas Company, Changchun, Jilin, 130062, China
Abstract:In order to predict the effect of CO2 immiscible flooding rapidly and accurately, a prediction model based on support vector machine was established. It takes 13 geological and engineering parameters (i.e. the ratio of residual formation pressure and CO2 miscibility pressure, porosity, permeability, reservoir mid-depth, net pay, formation temperature, relative density of crude oil, oil saturation, oil viscosity, coefficient of permeability variation, injection-production ratio, injection rate, and the ratio of water/gas alternating injection) as input parameters, and the average daily oil increment per well as output parameter. with six CO2 immiscible flooding projects and 1 CO2 miscible flooding project as training samples, and two CO2 immiscible flooding projects and one CO2 miscible flooding project as testing samples in China, the accuracy of the model was verified. The results showed that average relative error between predicted value and actual value of above 3 samples was 5.57%, which met the engineering requirement. The model was applied to predict the effect of CO2 immiscible flooding in Yaoyingtai Oilfield, indicating a relative error of only 1.30% in relation with the actual value. It suggested that the method based on support vector machine is feasible and effective to predict the effect of CO2 immiscible flooding. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《石油钻探技术》浏览原始摘要信息
点击此处可从《石油钻探技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号