首页 | 本学科首页   官方微博 | 高级检索  
     


Milne, a routine for the numerical solution of Milne's problem
Authors:Ajay Rawat
Affiliation:Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India 603 102
Abstract:The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct.

Program summary

Program title: MilneCatalogue identifier: AEGS_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 701No. of bytes in distributed program, including test data, etc.: 6845Distribution format: tar.gzProgramming language: Fortran 77Computer: PC under Linux or WindowsOperating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XPClassification: 4.11, 21.1, 21.2Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature.Running time: The test included in the distribution takes a few seconds to run.
Keywords:Milne's problem  One speed  Planar and isotropic scattering case  Numerical solution  X and H functions  Double Exponential quadrature
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号