摘 要: | 激光点云技术可用于苗圃树木生长状态监测与管理,为农业植保机器人提供有效的靶标信息。为了进一步提高树种分类和树冠、树干内部分割的精准性,提出一种基于改进PointNet++的激光点云苗圃树木分类与分割方法。首先,调整PointNet++深度网络邻居点云的相对特征值,同时融合三维点云的低维和高维特征,充分利用各层级点云的特征。然后,将坐标注意力模块与注意力池化融合,进一步增强局部特征提取的能力,提高分类和分割的准确性。最后,针对苗圃常见树木自制了包含7类苗圃景观树木点云的数据集并用于实验。实验结果表明,提出的树种识别方法总体精度可达92.50%,平均类别精度为94.22%;提出的树冠、树干分割方法的平均交并比为89.09%。所提方法在分类和分割性能方面均明显优于经典的PointNet和PointNet++,能够为苗圃树木检测识别和农业机器人作业提供更精确的信息。
|