首页 | 本学科首页   官方微博 | 高级检索  
     

基于全卷积层神经网络的轴承剩余寿命预测
引用本文:张继冬,邹益胜,邓佳林,张笑璐. 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30(18): 2231
作者姓名:张继冬  邹益胜  邓佳林  张笑璐
作者单位:西南交通大学机械工程学院,成都,610031
基金项目:国家重点研发计划资助项目(2017YFB1201201-06)
摘    要:传统的数据驱动的轴承剩余寿命预测方法需要基于知识和经验,通过人工建立性能退化指标,费时费力,为此,采用卷积神经网络对输入信号进行特征自学习和剩余寿命预测。将传统卷积神经网络中的全连接层全部更换为卷积层与池化层,以减少神经网络需训练的参数;采用加权平均方法对预测结果进行降噪处理。轴承加速寿命实验数据集验证了所提方法的有效性。

关 键 词:全卷积层  神经网络  轴承  剩余寿命预测  

Bearing Remaining Life Prediction Based on Full Convolutional Layer Neural Networks
ZHANG Jidong,ZOU Yisheng,DENG Jialin,ZHANG Xiaolu. Bearing Remaining Life Prediction Based on Full Convolutional Layer Neural Networks[J]. China Mechanical Engineering, 2019, 30(18): 2231
Authors:ZHANG Jidong  ZOU Yisheng  DENG Jialin  ZHANG Xiaolu
Affiliation:School of Mechanical Engineering,Southwest Jiaotong University,Chendu,610031
Abstract:Traditional method of data-driven bearing remaining life prediction was based on knowledge and experience, and the degradation index was established manually which was time-consuming and labor-intensive. Therefore, the convolutional neural network (CNN) was used to perform feature self-learning and remaining life prediction. All connected layers in the traditional CNN were replaced with convolutional layers and pooling layers to reduce the training parameters of the neural network. Weighted average method was used to denoise the prediction results. Dataset of the accelerated life test of the bearings shows the effectiveness of the proposed method.
Keywords:full convolutional layer  neural network  bearing  remaining life prediction  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号