首页 | 本学科首页   官方微博 | 高级检索  
     

融合鱼群和微分进化的蚁群算法的无功优化
引用本文:韩芳,邢晓哲,方婷婷,王成儒. 融合鱼群和微分进化的蚁群算法的无功优化[J]. 黑龙江电力, 2011, 33(2): 125-128
作者姓名:韩芳  邢晓哲  方婷婷  王成儒
作者单位:1. 东北电力大学,吉林,吉林,132012
2. 西北西宁输变电运行公司,青海,西宁,810000
摘    要:对于求解电力系统无功优化问题,提出了一种融合鱼群和微分进化的蚁群优化算法(FDEACO)。受人工鱼群觅食、聚群和追尾行为的启发,在基本蚁群算法的基础上,应用人工鱼群算法的追尾行为对蚁群在可行域上搜索到的解进行改进,加快了向最优解收敛的速度。在信息素更新机制里,通过引入微分进化算法的发散项,增加一个随机扰动,减小了算法陷入局部最优的可能性。在IEEE30测试系统上对新提出的算法进行校验,并与其它算法比较,证明FDEACO算法收敛速度快、全局寻优能力强。

关 键 词:电力系统  无功优化  蚁群算法  人工鱼群算法  微分进化算法

Reactive power optimization based on ant colony algorithm which combines artificial fish swarm algorithm and differential evolution algorithm
HAN Fang,XING Xiaozhe,FANG Tingting,WANG Chengru. Reactive power optimization based on ant colony algorithm which combines artificial fish swarm algorithm and differential evolution algorithm[J]. Heilongjiang Electric Power, 2011, 33(2): 125-128
Authors:HAN Fang  XING Xiaozhe  FANG Tingting  WANG Chengru
Affiliation:1.Northeast Dianli University,Jilin 130012,China;2.Xining Power Transmission and Distribution Company of Northwest China Grid,Xining 810000,China)
Abstract:This paper proposes ant colony algorithm which combines artificial fish school algorithm and differential evolution algorithm(FDEACO) to solve reactive power optimization in electric power system.Enlightened by foraging,clustering and tailgating of fish school,on the basis of ant colony algorithm,solutions of ant colony algorithm found in feasible region are improved by applying tailgating of artificial fish school algorithm,which accelerates the convergence speed of optimal solution.In pheromone updating,the potential of local optimum is reduced by introducing divergence of differential evolution algorithm and adding random disturbance.The new algorithm is examined and compared in IEEE30 system.Results show that FDEACO has high convergence speed and strong global optimization.
Keywords:electric power system  reactive power optimization  ant colony algorithm  artificial fish swarm algorithm  differential evolution algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号