首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于学习理论的改进粒子群优化算法
摘 要:
论文针对粒子群算法容易陷入局部最优的问题,提出基于学习理论的粒子群算法(L-PSO).该算法通过为粒子群全局最优粒子设定最大周期限制,使达到最大周期的全局最优粒子可以被取代,同时利用聚类的思想对粒子群进行分组,通过随机选择两个组中心,以一定概率进行交叉变异,生成竞争粒子并替换达到最大周期的全局最优粒子,能够较好地避免算法陷入局部最优,提高算法的收敛速度.在基准测试函数集上的测试结果表明该算法有效.
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号