首页 | 本学科首页   官方微博 | 高级检索  
     


Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil,investigated by high-speed IR thermography
Authors:I Golobic  J Petkovsek  DBR Kenning
Affiliation:1. Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia;2. School of Engineering and Design, Brunel University, Uxbridge, United Kingdom
Abstract:Growth of an isolated bubble and horizontal coalescence events between bubbles of dissimilar size were examined during pool nucleate boiling of water on a horizontal, electrically-heated titanium foil 25 μm thick. Wall temperature measurements on the back of the foil by high-speed IR camera, synchronized with high-speed video camera recordings of the bubble motion, improved the temporal and spatial resolution of previous observations by high-speed liquid crystal thermography to 1 ms and 40 μm, respectively, leading to better detailed maps of the transient distributions of wall heat flux. The observations revealed complex behaviour that disagreed with some other observations and current modelling assumptions for the mechanisms of heat transfer over the wall contact areas of bubbles and interactions between bubbles. Heat transfer occurred from the entire contact area and was not confined to a narrow peripheral triple-contact zone. There was evidence of an asymmetrical interaction between bubbles before coalescence. It was hypothesised that a fast-growing bubble pushed superheated liquid under a slow-growing bubble. Contact of this liquid with regions of the wall that had been pre-cooled during bubble growth caused local reductions in the wall heat flux. During coalescence, movement of liquid under both bubbles caused further changes in the wall heat flux that also depended on pre-cooling. Contraction of the contact area caused a peripheral reduction in the heat flux and there was no evidence of a large increase in heat flux during detachment. Boiling on very thin foils imposes special conditions. Sensitivity to the thermal history of the wall must be taken into account when applying the observations and hypotheses to other conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号