首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进布谷鸟搜索算法的永磁同步电机参数辨识
引用本文:吴忠强,杜春奇,张伟,李峰. 基于改进布谷鸟搜索算法的永磁同步电机参数辨识[J]. 计量学报, 2017, 38(5): 631-636. DOI: 10.3969/j.issn.1000-1158.2017.05.24
作者姓名:吴忠强  杜春奇  张伟  李峰
作者单位:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
基金项目:国家自然科学基金委员会与宝钢集团有限公司联合资助项目,河北省自然科学基金
摘    要:提出一种基于改进布谷鸟搜索算法的永磁同步电机参数辨识方法。针对布谷鸟搜索算法的不足,采用基于云隶属度的模糊推理调整巢主鸟发现外来鸟蛋的概率;采用自适应变步长的方法调整Lévy飞行步长。改进后的算法通过增加种群之间的多样性以加快收敛速度,提高了局部和全局寻优能力。永磁同步电机多参数辨识结果表明,改进布谷鸟搜索算法能有效地辨识电机各参数,与未改进算法相比,验证了改进算法的有效性和优越性能。

关 键 词:计量学  永磁同步电机  云隶属度  模糊推理  布谷鸟搜索算法  参数辨识  
收稿时间:2015-12-14

The Parameter Identification of Permanent Magnet Synchronous Motor Based on Improved Cuckoo Search Algorithm
WU Zhong-qiang,DU Chun-qi,ZHANG Wei,LI Feng. The Parameter Identification of Permanent Magnet Synchronous Motor Based on Improved Cuckoo Search Algorithm[J]. Acta Metrologica Sinica, 2017, 38(5): 631-636. DOI: 10.3969/j.issn.1000-1158.2017.05.24
Authors:WU Zhong-qiang  DU Chun-qi  ZHANG Wei  LI Feng
Affiliation:Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:Based on improved cuckoo search algorithm,a kind of parameter identification method of permanent magnet synchronous motor is proposed.In view of the deficiency of cuckoo search algorithm,designing the fuzzy reasoning based on cloud membership to adjust the probability of an alien egg discovered by host nests and using adaptive variable step method to adjust step size of Lévy flights.The improved algorithm can accelerate the convergence speed and improve the local and global optimization ability by increasing the diversity of the population.Permanent magnet synchronous motor multiparameter identification results show that improved cuckoo algorithm can effectively identify the motor parameters,and compared with the unmodified algorithm,the improved algorithm show the effectiveness and superior performance.
Keywords:metrology  permanent magnet synchronous motor  cloud membership  fuzzy reasoning  cuckoo search algorithm  parameter identification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号