首页 | 本学科首页   官方微博 | 高级检索  
     

基于低秩约束的极限学习机高效人脸识别算法
引用本文:卢涛,管英杰,潘兰兰,张彦铎. 基于低秩约束的极限学习机高效人脸识别算法[J]. 计算机科学, 2018, 45(3): 294-299
作者姓名:卢涛  管英杰  潘兰兰  张彦铎
作者单位:武汉工程大学计算机科学与工程学院 武汉430205 武汉工程大学智能机器人湖北省重点实验室 武汉430205,武汉工程大学计算机科学与工程学院 武汉430205 武汉工程大学智能机器人湖北省重点实验室 武汉430205,武汉工程大学计算机科学与工程学院 武汉430205 武汉工程大学智能机器人湖北省重点实验室 武汉430205,武汉工程大学计算机科学与工程学院 武汉430205 武汉工程大学智能机器人湖北省重点实验室 武汉430205
基金项目:本文受国家自然科学基金项目(61502354,61501413,61671332,41501505),湖北省自然科学基金(2015CFB451,2014CFA130,2012FFA099,2012FFA134,2013CF125),武汉工程大学科研基金(K201713)资助
摘    要:复杂应用场景中,光照变化、遮挡和噪声等干扰使得将像素特征作为相似性度量的识别算法的图像类内差大于类间差,降低了人脸识别性能。针对这一问题,提出了一种低秩约束的极限学习机鲁棒性人脸识别算法,提升了复杂场景下的识别性能。首先,利用人脸图像分布的子空间线性假设,将待识别图像聚类到相对应的样本子空间;其次,将像素域分解为低秩特征子空间和稀疏误差子空间,依据图像子空间的低秩性对噪声鲁棒的原理,提取人脸图像的低秩结构特征训练极限学习机的前向网络;最后,实现对噪声干扰鲁棒的极限学习机人脸识别算法。实验结果表明,相比前沿的人脸识别算法,所提方法不仅识别精度高、算法时间复杂度低,且具有较好的实用性。

关 键 词:人脸识别  噪声鲁棒特性  低秩矩阵恢复  极限学习机
收稿时间:2017-06-28
修稿时间:2017-08-28

Low-rank Constrained Extreme Learning Machine for Efficient Face Recognition
LU Tao,GUAN Ying-jie,PAN Lan-lan and ZHANG Yan-duo. Low-rank Constrained Extreme Learning Machine for Efficient Face Recognition[J]. Computer Science, 2018, 45(3): 294-299
Authors:LU Tao  GUAN Ying-jie  PAN Lan-lan  ZHANG Yan-duo
Affiliation:School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China Hubei Key Laboratory of Intelligent Robot Wuhan Institute of Technology,Wuhan 430205,China,School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China Hubei Key Laboratory of Intelligent Robot Wuhan Institute of Technology,Wuhan 430205,China,School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China Hubei Key Laboratory of Intelligent Robot Wuhan Institute of Technology,Wuhan 430205,China and School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China Hubei Key Laboratory of Intelligent Robot Wuhan Institute of Technology,Wuhan 430205,China
Abstract:In complex scenarios,illumination change,occlusion and noise make the image intra-variance of recognition algorithm (taking pixel feature as similarity measure) greater than the between-class variance,and reduce the perfor-mance of face recognition.To solve this problem,this paper proposed an low-rank supported extreme learning machine for robust face recognition to improve recognition performance.Firstly,the subspace linear assumption of face image distribution is used to make the image waiting to be recognized cluster to the corresponding sample subspace.Secondly,the pixel domain is resolved into low-rank feature subspace and sparse error subspace,and the forward network of low-rank structure characteristic of face image for training extreme learning machine is extracted,according to the low-rank principal of the image subspace for noise robustness.Finally,the extreme learning machine face recognition algorithm for noise robustness is realized.Experimental results show that,compared with the state-of-the-art face recognition algorithm,the proposed method not only has high recognition accuracy,but also has lower time complexity and better practicability.
Keywords:Face recognition  Noise robust feature  Low-rank matrix recovery  Extreme learning machine
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号