YOLO9000模型的车辆多目标视频检测系统研究 |
| |
引用本文: | 李鹏飞,刘瑶,李珣,张宏伟. YOLO9000模型的车辆多目标视频检测系统研究[J]. 计算机测量与控制, 2019, 27(8): 21-24 |
| |
作者姓名: | 李鹏飞 刘瑶 李珣 张宏伟 |
| |
作者单位: | 西安工程大学,, |
| |
基金项目: | 陕西省自然科学基础研究计划项目(No. 2016JQ5106);陕西省教育厅专项科研项目(No.16JK1342);西安工程大学控制科学与工程建设经费资助项目(107090811);西安工程大学研究生创新基金项目(chx201816) |
| |
摘 要: | 提出了一种基于Darknet框架下YOLO9000算法的车辆多目标检测方法。该方法在YOLO9000算法基础下,根据训练结果和车辆目标特征对YOLO9000网络模型进行改进,并对其算法参数进行调整,获得更为适合于当前道路视频检测的YOLO9000-md网络模型下车辆多目标检测方法。为验证检测方法的有效性和完备性,对其模型进行了验证对比分析,同时对视频车辆进行了检测实验,实验结果表明,基于YOLO9000-md网络结构的车辆多目标检测方法,验证检测正确率达到了96.15%,具有一定的鲁棒性和通用性,为今后进行基于视频的更加智能化和自动化的数据分析提供了可靠的理论依据。
|
关 键 词: | 智能交通 目标检测 网络模型 正确率 |
收稿时间: | 2018-12-28 |
修稿时间: | 2019-03-01 |
A Detection Method of Multi-target for Vehicles based on YOLO9000 Model |
| |
Abstract: | A multi-vehicle detection method was proposed, which consists of YOLO 9000 under Darknet framework. The YOLO9000 structure was improved according to the the training results and vehicle target characteristics, the algorithm parameters are adjusted. Finally, The YOLO9000-md network model was obtain, which is found more suitable for road vehicles detection. In order to verify the validity and completeness of this method, the model was verified and contrasted. At the same time, the vehicles under video was tested. The experimental results show that, the accuracy rate reaches 96.15% based on the YOLO9000-md model, which has certain robustness and versatility. It provides a reliable theoretical basis for more intelligent and automated data analysis based on video in the future. |
| |
Keywords: | Intelligent traffic target detection network model correct rate |
|
| 点击此处可从《计算机测量与控制》浏览原始摘要信息 |
|
点击此处可从《计算机测量与控制》下载免费的PDF全文 |
|