基于轻量级卷积神经网络的实时缺陷检测方法研究 |
| |
作者姓名: | 姚明海 杨圳 |
| |
作者单位: | 浙江工业大学信息工程学院,杭州,310023;浙江工业大学信息工程学院,杭州,310023 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目) |
| |
摘 要: | 应用机器视觉实现磁片表面缺陷的自动检测可以提高生产效率、降低生产成本。深度卷积神经网络具有高精度的分类性能,尤其在图像识别方面有显著的优点。但是目前提出的深度神经网络模型,由于参数量和计算量的巨大,在工业生产流水线上不能满足实时检测的需求。针对这个问题,基于深度可分离卷积和通道混洗,提出了一种轻量级高效低延时的卷积神经网络架构MagnetNets。为了评估MagnetNets网络模型的性能,将MagnetNets网络模型与MobileNets、ShuffleNet、Xception、MobileNetV2在公开数据集ImageNet中做了对比实验。然后将MagnetNets网络模型应用在磁片缺陷检测系统中进行缺陷检测。实验结果表明,提出的网络架构显著地减少参数数量,具有良好的性能。同时在磁片缺陷检测系统中减少了延时,提高检测速度,缺陷检测识别率达到了97.3%。
|
关 键 词: | 卷积神经网络 深度可分离卷积 通道混洗 缺陷检测 |
收稿时间: | 2018-11-12 |
修稿时间: | 2018-12-07 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《计算机测量与控制》浏览原始摘要信息 |
|
点击此处可从《计算机测量与控制》下载免费的PDF全文 |
|