首页 | 本学科首页   官方微博 | 高级检索  
     

基于UM的磁浮列车-轨道梁耦合振动仿真程序开发
引用本文:德米特里·波戈列洛夫,雷强,根纳季·米克希夫,亚历山大·罗迪科夫. 基于UM的磁浮列车-轨道梁耦合振动仿真程序开发[J]. 计算机辅助工程, 2019, 28(1): 28-35
作者姓名:德米特里·波戈列洛夫  雷强  根纳季·米克希夫  亚历山大·罗迪科夫
作者单位:布良斯克国立理工大学 计算力学实验室,俄罗斯 布良斯克,241035;四川同算科技有限公司,四川 眉山,620860
基金项目:俄罗斯基础研究基金(17 01 00815)
摘    要:基于大型通用多体动力学仿真分析平台Universal Mechanism(UM),开发用于磁浮列车 轨道梁耦合振动仿真的专用程序UM Maglev,其中:磁浮列车设置为多刚体模型,弹簧和阻尼器的刚度和阻尼视为线性或非线性力元;轨道梁设置为三维铁木辛柯梁模型,或从外部有限元软件导入模态分析结果;轨道线路包含平面和纵断面曲线、超高和轨面随机不平顺;悬浮和导向系统控制采用PID模型;多体动力学系统微分 代数方程求解采用Park刚性稳定法。该程序可用于考察磁浮列车的曲线通过性能、运行平稳性和乘坐舒适度,研究悬浮/导向气隙与磁浮控制系统参数优化,分析轨道梁在动态电磁力作用下的振动响应。

关 键 词:磁浮列车  轨道  振动  耦合  多体动力学  数值积分
收稿时间:2018-08-22
修稿时间:2018-10-29

Development of dynamics simulation program for coupling vibration of maglev train track beam based on UM
POGORELOV Dmitry,LEI Qiang,MIKHEEV Gennady and RODIKOV Alexander. Development of dynamics simulation program for coupling vibration of maglev train track beam based on UM[J]. Computer Aided Engineering, 2019, 28(1): 28-35
Authors:POGORELOV Dmitry  LEI Qiang  MIKHEEV Gennady  RODIKOV Alexander
Affiliation:Laboratory of Computational Mechanics, Bryansk Technical University,Sichuan Tongsuan Technology Co., Ltd.,Laboratory of Computational Mechanics, Bryansk Technical University,Laboratory of Computational Mechanics, Bryansk Technical University
Abstract:Based on the large general multi body dynamics simulation and analysis platform Universal Mechanism(UM), a professional computer program UM Maglev is developed for the coupling vibration simulation of maglev train track beam. The maglev train is set as multi rigid body model, the stiffness and damping of springs and dampers are regarded as linear or nonlinear force elements. The track is described either as 3D Timoshenko beams, or the model analysis results are imported from external finite element analysis software. The horizontal and vertical section curves, super elevation and surface random irregularities can added to the track. The control system of suspension and guidance is simulated by PID model. The Park rigid stabilization method is used to solve the differential algebraic equations of the multi body dynamic system. By UM Maglev, the curve passing performance, running stability and riding comfort of maglev train can be examined, the parameters of the suspension and guidance air gap of the maglev control system can be optimized, and the vibration responses of maglev track beam under the effect of dynamic maglev force can be analyzed.
Keywords:maglev train   track   vibration   coupling   multi body dynamic   numerical integration
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机辅助工程》浏览原始摘要信息
点击此处可从《计算机辅助工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号