首页 | 本学科首页   官方微博 | 高级检索  
     

基于互信息的项目协同过滤推荐算法
引用本文:郑诚,章金平,徐启南. 基于互信息的项目协同过滤推荐算法[J]. 测控技术, 2019, 38(4): 41-44
作者姓名:郑诚  章金平  徐启南
作者单位:安徽大学 计算智能与信号处理实验室,安徽合肥230601;安徽大学 计算机学院,安徽合肥230601;安徽大学 计算智能与信号处理实验室,安徽合肥230601;安徽大学 计算机学院,安徽合肥230601;安徽大学 计算智能与信号处理实验室,安徽合肥230601;安徽大学 计算机学院,安徽合肥230601
摘    要:协同过滤算法是经典的个性化推荐算法,其中相似度度量方法直接影响推荐系统的准确率。针对用户评分极端稀疏情况下传统相似度度量方法均存在各自的弊端,导致推荐系统的推荐精度不高问题,提出了一种基于互信息的项目协同过滤推荐算法。该算法将互信息作为相似度度量方法,不仅考虑了变量之间的线性或非线性相关性,而且还能挖掘变量之间的相关性强弱。另外,由于共同评分的项目用户数很少,在互信息方法基础上引入了一个平滑系数因子,来缓解共同评分过少项目之间相似性度量不准确问题。最后,在公开的MovieLens、Jester两个数据集上进行了大量对比实验。实验结果表明,新算法能在一定程度上提高推荐系统的预测准确率,并能缓解数据稀疏性问题。

关 键 词:协同过滤  互信息  平滑系数  推荐

Items Collaborative Filtering Recommendation Algorithm Based on Mutual Information
Abstract:Collaborative filtering algorithm is a classic personalized recommendation algorithm,in which the similarity measurement method directly affects the accuracy of the recommendation system.There are disadvantages in the traditional methods of similarity measurement under the extreme sparseness of user ratings,leading to the recommendation accuracy of recommendation system is not high,and a items collaborative filtering recommendation algorithm based on mutual information is proposed.Mutual information is used as similarity measurement method.It not only considers the linear or nonlinear correlation between variables,but also mining the correlation between variables.In addition,due to the small number of users who join in score items,a smooth coefficient factor based on the mutual information method is introduced to alleviate the inaccuracy of the similarity measurement between items with too few common scores.Finally,a large number of comparative experiments on the public two data sets (MovieLens,Jester) are conducted.The experimental results show that the new algorithm can improve the prediction accuracy of the recommendation system to a certain extent,and can alleviate the data sparseness problem.
Keywords:collaborative filtering  mutual information  smoothing coefficient  recommendation
本文献已被 万方数据 等数据库收录!
点击此处可从《测控技术》浏览原始摘要信息
点击此处可从《测控技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号