Abstract: | A series of liquid polyester polyols from adipic acid (AA), phthalic anhydride (PA), ethylene glycol, propanediol‐1,2, and trihydroxymethylpropane, varying in the molar ratio of PA to AA, were prepared. The effects of the o‐aromatic ring in the molecular chain, which came from PA, on the viscosity, glass‐transition temperature, and thermal degradation temperature of the polyester polyols were studied with viscometry, differential scanning calorimetry, and thermogravimetry. The intrinsic viscosity and glass‐transition temperature increased with the concentration of the o‐aromatic ring increasing. The temperature of the maximum thermal degradation rate for aliphatic polyester polyols was 434.20°C. Two steps of thermal degradation were found when there were o‐aromatic rings in the molecular chain. One thermal degradation temperature was 358.36–360.48°C, and the other was 412.85–427.18°C. Polyester polyols with o‐aromatic rings had higher stability at lower temperatures (<240.00°C). However, aliphatic polyester polyols had higher stability at higher temperatures (300.00–480.00°C). The activation energy and order of degradation were calculated from thermogravimetric curves. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1617–1624, 2002 |