首页 | 本学科首页   官方微博 | 高级检索  
     


[Poly(ethylene terephthalate) ionomer]/silicate hybrid materials via polymer–in situ sol‐gel reactions
Authors:Alexander A Lambert  Kenneth A Mauritz  David A Schiraldi
Abstract:A scheme was developed for producing poly(ethylene terephthalate (PET) ionomer)/silicate hybrid materials via polymer–in situ sol‐gel reactions for tetraethylorthosilicate (TEOS) using different solvents. Scanning electron microscopy/EDAX studies revealed that silicate structures existed deep within PET ionomer films that were melt pressed from silicate‐incorporated resin pellets. 29Si solid‐state NMR spectroscopy revealed considerable Si—O—Si bond formation, but also a significant fraction of SiOH groups. 23Na solid‐state NMR spectra suggested the presence of ionic aggregates within the unfilled PET ionomer, and that these aggregates do not suffer major structural rearrangements by silicate incorporation. For an ionomer treated with TEOS using MeCl2, Na+ ions are less associated with each other than in the unfilled control, suggesting silicate intrusion between PET–SOurn:x-wiley:00218995:media:APP10586:tex2gif-stack-1 Na+ ion pair associations. The ionomer treated with TEOS + tetrachloroethane had more poorly formed ionic aggregates, which illustrates the influence of solvent type on ionic aggregation. First‐scan DSC thermograms for the ionomers demonstrate an increase in crystallinity after the incorporation of silicates, but solvent‐induced crystallization also appears to be operative. Second‐scan DSC thermograms also suggest that the addition of silicate particles is not the only factor implicated in recrystallization, and that solvent type is important even in second‐scan behavior. Silicate incorporation does not profoundly affect the second scan Tg vs. solvent type, i.e., chain mobility in the amorphous regions is not severely restricted by silicate incorporation. Recrystallization and melting in these hybrids appears to be due to an interplay between a solvent‐induced crystallization that strongly depends on solvent type and interactions between PET chains and in situ‐grown, sol‐gel‐derived silicate particles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1749–1761, 2002; DOI 10.1002/app.10586
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号