首页 | 本学科首页   官方微博 | 高级检索  
     


An 8-bit low power DAC with re-used distributed binary cells architecture for reconfigurable transmitters
Authors:Santanu Sarkar  Swapna Banerjee
Affiliation:IEEE, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302 India
Abstract:In this work an 8-bit DAC is presented which uses a new segmented architecture, where distributed binary cells are re-used in thermometric manner to realize the MSB unit cells. The DAC has been fabricated in 0.18 μm five-metal CMOS n-well process to be embedded in multi-standard reconfigurable wireless transmitters for low-speed applications. The proposed architecture has an inherent ability to reduce midcode glitch like the unary architecture, and the simulated midcode glitch is only 0.01 pV s. Simulation results show that the proposed DAC performs with an integral nonlinearity (INL) of 0.33 LSB and a differential nonlinearity (DNL) of 0.14 LSB. The DAC can achieve a maximum measured SFDR of 65.19 dB for 97.50 kHz signal at a sampling rate of 100 MSPS, without using any calibration or dynamic element matching (DEM) technique. For 1.07 MHz signal the measured SFDR is 56.84 dB at 100 MSPS sampling rate. At 50 MSPS sampling frequency and 146 kHz signal the SFDR of the DAC is 65.90 dB. The measured SFDR at 538 kHz signal is 63.62 dB for a sampling rate of 50 MSPS. Measured third order intermodulation distortion of the DAC is 58.55 dB, for a dual tone test with 1.03 MHz and 1.51 MHz signals at 50 MSPS sampling rate. Low power is also an important aspect in portable wireless devices. For 10.06 MHz signal and 100 MSPS sampling frequency, the power dissipation of the DAC is 20.74 mW with 1.8 V supply.
Keywords:Digital-to-analog converter  CMOS current-steering DAC  Low power  SFDR  Low glitch  Mid-code glitch  Low spurious  Reconfigurable transmitters  Wireless transmitters  Distributed binary cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号