首页 | 本学科首页   官方微博 | 高级检索  
     

基于文件、进程和网络的APT检测模型
引用本文:朱平,史记,杜彦辉. 基于文件、进程和网络的APT检测模型[J]. 信息安全与通信保密, 2014, 0(3): 99-103
作者姓名:朱平  史记  杜彦辉
作者单位:中国人民公安大学网络安全保卫学院,北京100038
摘    要:APT(Advanced Persistent Threat)攻击造成的信息泄漏是目前国家核心部门和大型商业集团面临的最严重的信息安全威胁.通过APT攻击开展的信息窃取行为一般受政治势力或特定利益集团操控,由具有丰富经验的网络渗透组织或团队实施,具有持续时间长、技术性强、策略性高的特点,攻击使用的APT木马变化多端,信息窃取行为手段随目标对象的不同而千变万化,常规检测手段和软件难以防范.文中提出一种基于文件、进程(线程)和网络三要素相结合的APT网络信息窃取行为检测模型,为加强对检测结果的自动化判断,作者引入神经网络中的自适应谐振检验方法,实验表明,模型可以对APT木马的信息窃取行为进行有效检测.

关 键 词:APT  信息窃取  网络木马  文件  进程  网络

APT Information Stolen Behavior Detection based on File,Process and Network Factor Analysis
ZHU Ping,SHI Ji,DU Yanhui. APT Information Stolen Behavior Detection based on File,Process and Network Factor Analysis[J]. China Information Security, 2014, 0(3): 99-103
Authors:ZHU Ping  SHI Ji  DU Yanhui
Affiliation:(People's Public Security University of China, School of Network Security Defending, Beijing 100038, China)
Abstract:APT(Advanced Persistent Threat)is the most serious threat to national and corporation. Generally, it is controlled by a meticulously designed organization and hardlydetected. It has advanced,persistent and high strategy characteristics.This paper presents a method for APT information theft behavior detection basedon file process and network factor analysis. To identify the dangerous behaviors automatically, a dynamic learning and classification method according to the characteristics of the model based on adaptive resonance theory is proposed. Experiments indicate that the model based on this method can detect APT information stolen behavior effectively.
Keywords:APT  information stolen  Trojan  file  process  network
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号