首页 | 本学科首页   官方微博 | 高级检索  
     

基于振动图像纹理特征识别的轴承故障程度诊断方法研究
引用本文:关贞珍,郑海起,叶明慧. 基于振动图像纹理特征识别的轴承故障程度诊断方法研究[J]. 振动与冲击, 2013, 32(5): 127-131. DOI:  
作者姓名:关贞珍  郑海起  叶明慧
作者单位:石家庄军械工程学院 石家庄 050003
摘    要:针对轴承故障诊断中故障分类研究多,故障程度研究少,振动图像信息丰富得不到充分利用问题,提出利用振动图像纹理特征识别技术进行轴承故障程度诊断方法。该方法先对轴承振动响应信号进行EMD-形态差值滤波处理,后将滤波后信号转换为双谱等高线图,利用灰度三角共生矩阵得到双谱图形纹理特征,应用主成份分析法从纹理特征参数中提取轴承故障程度特征参量,用支持向量机进行模式识别。实验结果表明该方法能有效区别轴承外圈、内圈及内外圈的故障严重程度,可为旋转机械故障程度诊断提供新方法。

关 键 词:轴承  故障诊断  故障程度  振动图像  
收稿时间:2011-12-20
修稿时间:2012-03-29

Research fault severity asessment for bearing based on vibration image
GUAN Zhen-zhen,ZHENG Hai-qi,YE Ming-hui. Research fault severity asessment for bearing based on vibration image[J]. Journal of Vibration and Shock, 2013, 32(5): 127-131. DOI:  
Authors:GUAN Zhen-zhen  ZHENG Hai-qi  YE Ming-hui
Affiliation:Ordnance Engineering College, 050003, China
Abstract:Aiming at problems that the research of fault classification on bearing is more but the research of fault degree identification is litter, the information of vibration image is abundance but it has not been used fully, the method of fault degree identification of bearing using vibration image is proposed. The original vibration signals are de-noised with EMD- morphology filter, then is converted to bispectrum contour image, after it calculated using gray-level co-occurrence matrix and principal component analysis, the fault degree character parameters are acquired. At last the fault degree is diagnosed by support vector machine. The results of experiments show that this method can diagnose the fault degree of bearing effectively, and it provides a new diagnosis approach for the fault degree of rotating machinery.
Keywords:Bearing  Fault diagnosis  fault degree  vibration image
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号