首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的电站锅炉燃烧稳定性判别
引用本文:郝祖龙,刘吉臻,田亮. 基于支持向量机的电站锅炉燃烧稳定性判别[J]. 华北电力大学学报(自然科学版), 2007, 34(4): 51-55
作者姓名:郝祖龙  刘吉臻  田亮
作者单位:华北电力大学,控制科学与工程学院,北京,102206;华北电力大学,控制科学与工程学院,河北,保定,071003
基金项目:国家自然科学基金资助项目(50576022)
摘    要:以某600MW单元机组锅炉运行时的火焰信号为分析对象,利用支持向量机研究了锅炉燃烧稳定性判别问题。提取了火检信号的均值、方差、峰峰值和均匀度等4个特征量,然后比较了采用3种不同核函数的支持向量机对同一火检信号样本组的训练效果,其中模型参数通过交叉验证的方法确定。分析表明,径向基核支持向量机判别准确率最高。最后测试结果验证了支持向量机用于火焰燃烧稳定性判别,具有很好的分类和泛化能力。

关 键 词:电站锅炉  火焰信号  燃烧稳定性  模式分类  支持向量机  交叉验证
文章编号:1007-2691(2007)04-0051-05
修稿时间:2006-10-18

Research on judging of combustion stability for utility boiler based on Support Vector Machines
HAO Zu-long,LIU Ji-zhen,TIAN Liang. Research on judging of combustion stability for utility boiler based on Support Vector Machines[J]. Journal of North China Electric Power University, 2007, 34(4): 51-55
Authors:HAO Zu-long  LIU Ji-zhen  TIAN Liang
Affiliation:1. School of Control Science and Engineering, North China Electric Power University, Beijing 102206, China; 2. School of Control Science and Engineering, North China Electric Power University, Baoding 071003, China
Abstract:Support Vector Machines was presented to judge the combustion stability of coal fired boiler based on the flame signals from the boiler of a 600MW boiler-turbine unit.Firstly the four features of the flame signal were extracted,which were average of the flame signal,variance of the flame signal,peak-peak value of the flame signal,rate of the sum of the power spectrum values in different frequency zones.Then comparing with the training results of the SVMs with three types of kernels,it shows that the SVM with radial basis function kernel function had more accurate than the others.To get better classification result,the model parameters of classifiers were tuned with cross-validation.Finally the test result suggests that SVM is effective for classification combustion flame and has better generalization ability.
Keywords:utility boiler  flame signal  combustion stability  pattern identification  Support Vector Machines  cross-validation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号