首页 | 本学科首页   官方微博 | 高级检索  
     

基于紧致型小波神经网络的往复泵故障诊断
引用本文:赵志华,吴力,殷海双. 基于紧致型小波神经网络的往复泵故障诊断[J]. 噪声与振动控制, 2013, 33(5): 150-154
作者姓名:赵志华  吴力  殷海双
作者单位:( 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318;2. 大庆油田天然气分公司 培训中心, 黑龙江 大庆 163412 )
摘    要:为了对往复泵的故障进行正确诊断,提出基于紧致型小波神经网络的往复泵故障诊断方法。以往复泵单个泵缸内的压力信号作为系统特征信号通过小波包分解来提取故障特征向量,同时将此特征向量作为小波神经网络的输入,利用小波神经网络对故障做进一步的精确实时诊断。通过对往复泵液力端多故障诊断实例的检验表明,该系统故障诊断正确率达到94 %以上。

关 键 词:振动与波   小波神经网络   往复泵   故障诊断   小波包  
收稿时间:2012-11-29

Fault Diagnosis Technology of Reciprocating Pumps Based on Compact Wavelet Neural Network
Abstract:A method of the reciprocating pump fault diagnosis is proposed based on inlay model Wavelet Neural Network, in order to determine the fault type of the reciprocating pump accurately. This paper using the reciprocating pump single cylinder pressure as the characteristic signal of the system, extracting feature vector of the faults by wavelet packet decomposition, and at the same time, using this feature vector as the input signal of the wavelet neural network to determine the type of the fault. The examples of faults diagnosis of fluid end on a reciprocating pump show that the system fault diagnosis accuracy reached more than 94%.
Keywords:
点击此处可从《噪声与振动控制》浏览原始摘要信息
点击此处可从《噪声与振动控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号